Abstract

The Ehrenfeucht-Fraisse game is a two-person game of perfect information which is connected to the Zero-One Laws of first order logic. We give bounds for roughly how quickly the Zero-One Laws converge for random bit strings and random circular bit sequences. We measure the tenaciousness of the second player ("Duplicator") in playing the Ehrenfeucht-Fraisse game, by bounding the numbers of moves Duplicator can play and win with probability $1-\epsilon$. We show that for random bit strings and random circular sequences of length $n$ generated with a low probability ($p\ll n^{-1}$), the number of moves, $T_{\epsilon}(n)$, is $\Theta(\log_2 n)$. For random bit strings and circular sequences with isolated ones ($n^{-1}\ll p \ll n^{-1/2}$), $T_{\epsilon}(n) = O(\min(\log_2 np, -\log_2 np^2))$. For $n^{-1/2}\ll p$ and $(1-p) \ll n^{-1/2}$, we show that $T_{\epsilon}(n) = O(\log^* n)$ for random circular sequences, where $\log^* n$ has the usual definition– the least number of times you iteratively apply the logarithm to get a value less than one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.