Abstract

The oddball paradigm is commonly used to investigate human time perception. Trains of identical repeated events ('standards') are presented, only to be interrupted by a different 'oddball' that seems to have a relatively protracted duration. One theoretical account has been that this effect is driven by repetition suppression for repeated standards. The idea is that repeated events seem shorter as they incur a progressively reduced neural response, which is supported by the finding that oddball perceived duration increases linearly with the number of preceding repeatedstandards. However, typical oddball paradigms confound the probability of oddball presentations with variable numbers of standard repetitions on each trial, allowing people to increasingly anticipate an oddball presentation as more standards are presented. We eliminated this by making participants aware of what fixed number of standards they would encounter before a final test input and tested different numbers of standards in separate experimental sessions. The final event of sequences, the test event, was equally likely to be an oddball or another repeat. We found a positive linear relationship between the number of preceding repeated standards and the perceived duration of oddball test events. However, we also found this for repeat tests events, which speaks against the repetition suppression account of the temporal oddball effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call