Abstract

Study regionUpper Yangtze River Basin, China. Study focusThe intensification of climate change and human activities leads to non-stationarity of hydrological processes. Previous studies mainly focus on monthly hydrological or Budyko models. However, it is a challenge that catchment hydrological responses to human activities for daily hydrological models. This study aims to evaluate anthropogenic impacts on water yield of the upper Yangtze River Basin by representing the Xinanjiang model parameters as functions of socio-economic factors. New hydrological insightsThe hydrological parameters WM (soil water storage capacity) and KE (ratio of potential evaporation to pan evaporation) increased in 1976–2000, while the parameter B (non-homogeneity of the soil water storage capacity) declined. It is further demonstrated that the population and the drainage area of reservoirs have the greatest impact on B and WM, respectively. Their linear functional form is validated to be effective for improving streamflow simulation. These findings can help understand the non-stationarity of the rainfall-runoff relationship due to increasing human development and contribute to adaptive development strategies for future water resource management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.