Abstract

Aging is associated with mitochondrial decline and reduced adenosine triphosphate (ATP) production leading to cellular dysfunction, but this is improved by long-wavelength light absorbed by cytochrome c oxidase, increasing cytochrome c oxidase activity, ATP production and improving metabolism, sensory motor function, and cognition. Yet, the sequence of these events is unknown. We give old flies a single 90-minute 670-nm pulse and measure temporal sequences of changes in respiration, ATP, motor, and cognitive ability. Respiration increased significantly 20minutes after light initiation and remained elevated for 4days. Measurable ATP increased at 1 hour, peaking at 3 hours, and then declined rapidly. Respiration improved before ATP increased, which indicates an early ATP sink. Flies explore environments stereotypically, which is lost with aging but is reestablished for 7 hours after light exposure. However, again, there are improvements before there are peaks in ATP production. Improved mobility and cognitive function persist after ATP levels return to normal. Hence, elevated ATP in age may initiate independent signaling mechanisms that result in improvements in aged metabolism and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call