Abstract

The translocation of DNA molecules through nanopores has attracted wide interest for single-molecule detection. However, the multiple roles of electric fields fundamentally constrain the deceleration and motion control of DNA translocation. In this paper, we show how a single anchored DNA molecule can be manipulated for repeated capture using a transmembrane pressure gradient. Continuously and slowly changing the magnitude of the pressure provided two opposite directions for the force field inside a nanopore, and we observed an anchored DNA molecule entering the nanopore throughout the process from tentative to total entry. The use of both voltage and pressure across a nanopore provides an alternative method to capture, detect and manipulate a DNA molecule at the single-molecule level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.