Abstract

Reperfusion-induced vascular endothelial cell dysfunction may exacerbate skeletal muscle damage after an ischemic insult. Although concurrent endothelial and skeletal muscle injury has been documented after ischemia and reperfusion, their temporal relationship has not been well characterized. An isolated rat hindlimb model was used to measure the effect of progressive ischemia and reperfusion on both endothelial cell function and skeletal muscle damage. Endothelial cell dysfunction as reflected by changes in permeability was measured by protein clearance techniques with use of albumin labeled with iodine 125 (125I-albumin). Skeletal muscle damage was assessed by tissue uptake of technetium 99m pyrophosphate (99mTc-pyrophosphate). The soleus muscle was used for evaluation of endothelial and skeletal muscle damage throughout the study. Significant increases in vascular permeability preceded skeletal muscle damage. The protein leak index increased after 60 minutes of ischemia and reperfusion (7.5 ± 1.2 vs 4.1 ± 0.9 control), whereas the muscle injury index did not change until 120 minutes of ischemia and 60 minutes of reperfusion (10.5 ± 0.6 vs 4.5 ± 0.5 control). Significant graded increases in both indexes were noted with longer intervals of ischemia. Electron microscopy revealed ultrastructural evidence of endothelial and skeletal muscle damage after 120 minutes of ischemia and 60 minutes of reperfusion but not after 60 minutes of ischemia and reperfusion. These studies indicate that microvascular injury precedes skeletal muscle damage after ischemia and reperfusion. This temporal relationship may have important implications in designing strategies to minimize ischemia-reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.