Abstract

The temporal properties of human visual motion detection were explored. Experiment 1 measured thresholds for speed discrimination as a function of stimulus duration. Thresholds fell asymptotically to a Weber fraction around 0.06 over a period of approx. 100 msec, with faster speeds asymptoting at slightly shorter stimulus durations. A second experiment required subjects to discriminate a pattern that was modulated between two speeds from one which remained at a constant speed. The minimum depth of the modulation required to make this judgement was found to be equivalent to a Weber fraction of 0.3 at low modulation rates, around five times greater than when the velocities were presented in isolation (expt 1). At some higher modulation rate performance dramatically declined. The modulation rate at which this occurred decreased with stimulus speed, and increased with stimulus size. The results of expt 1 seem consistent with the known properties of primary motion sensors, while the results of the latter experiments may arise from a later stage integrating the output of these primary motion sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.