Abstract

The nucleation (to a limited extent), growth and coarsening behavior of Cu-rich precipitates in a concentrated multicomponent Fe–Cu-based steel aged at 500°C from 0.25 to 1024h is investigated. The temporal evolution of the precipitates, heterophase interfaces, matrix compositions and precipitate morphologies are presented. With increasing time, Cu partitions to the precipitates, Ni, Al and Mn partition to the interfacial region, whereas Fe and Si partition to the matrix. Coarsening time exponents are determined for the mean radius, 〈R(t)〉, number density, NV(t), and supersaturations, which are compared to the Lifshitz–Slyzov–Wagner (LSW) model for coarsening, modified for concentrated multicomponent alloys by Umantsev and Olson (UO). The experimental results indicate that the alloy does not strictly follow UO model behavior. Additionally, we delineate the formation of a Ni–Al–Mn shell with a stoichiometric ratio of 0.51:0.41:0.08 at 1024h, which reduces the interfacial free energy between the precipitates and the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.