Abstract

Abstract Temporal changes in stability and shear associated with the development of thunderstorms are quantified using the enhanced temporal resolution of combined Atmospheric Emitted Radiance Interferometer (AERI) thermodynamic profile retrievals and National Oceanic and Atmospheric Administration (NOAA) 404-MHz wind profiler observations. From 1999 to 2003, AERI systems were collocated with NOAA wind profilers at five sites in the southern Great Plains of the United States, creating a near-continuous dataset of atmospheric soundings in both the prestorm and poststorm environments with a temporal resolution of up to 10 min between observations. Median values for several standard severe weather indices were calculated for tornadic storms and nontornadic supercells. It was found that instability generally increases throughout the preconvective period, reaching a peak roughly 1 h before a tornado forms or a nontornadic supercell forms large hail. Wind shear for both tornadic and nontornadic storms starts to increase roughly 3 h before storm time. However, indices are highly variable between time and space and may not be representative of the environment at large.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.