Abstract

AbstractThe representation of contrail cirrus in climate models has advanced in the last years tremendously. Nevertheless, uncertainties in particular regarding the representation of contrail microphysics still remain. Properties of young contrail cirrus differ from those of natural cirrus due to the large ice crystal number concentration common in contrails. Consequently, microphysical process rates in contrail cirrus, which control its lifetime, can be very different to those in natural cirrus. We extend a contrail cirrus scheme within a climate model by implementing a microphysical two‐moment scheme and study the life cycle of a contrail cirrus cluster. In an idealized experiment we study the properties and microphysical process rates of a contrail cirrus cluster in a large and long‐lived ice supersaturated region. We find that at flight level contrail cirrus display their typical high ice crystal number concentration (of about 10–100 cm−3) for a few hours with far lower densities in lower levels caused by sedimentation. After about 7 h contrail cirrus have spread considerably so that even at flight level associated ice crystal number concentrations have dropped to values that prohibit fast relaxation of ice supersaturation. The reduced ice crystal number and the resulting limited water uptake in the contrail cirrus limit the lifetime of the contrail cirrus cluster to about 10 h even though surrounding conditions would be still favorable for contrail cirrus persistence. In our case studies, contrail cirrus resembles natural cirrus regarding their ice crystal number concentration and size after 5–7 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.