Abstract

Speciation is a process that occurs over time and, as such, can only be fully understood in an explicitly temporal context. Here we discuss three major consequences of speciation’s extended duration. First, the dynamism of environmental change indicates that nascent species may experience repeated changes in population size, genetic diversity, and geographic distribution during their evolution. The present characteristics of species therefore represents a static snapshot of a single time point in a species’ highly dynamic history, and impedes inferences about the strength of selection or the geography of speciation. Second, the process of speciation is open ended—ecological divergence may evolve in the space of a few generations while the fixation of genetic differences and traits that limit outcrossing may require thousands to millions of years to occur. As a result, speciation is only fully recognized long after it occurs, and short-lived species are difficult to discern. Third, the extinction of species or of clades provides a simple, under-appreciated, mechanism for the genetic, biogeographic, and behavioral ‘gaps’ between extant species. Extinction also leads to the systematic underestimation of the frequency of speciation and the overestimation of the duration of species formation. Hence, it is no surprise that a full understanding of speciation has been difficult to achieve. The modern synthesis—which united genetics, development, ecology, biogeography, and paleontology—greatly advanced the study of evolution. Here we argue that a similarly synthetic approach must be taken to further our understanding of the origin of species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call