Abstract
Abstract The continuum has been one of the most controversial topics in mathematics since the time of the Greeks. Some mathematicians, such as Euclid and Cantor, held the position that a line is composed of points, while others, like Aristotle, Weyl, and Brouwer, argued that a line is not composed of points but rather a matrix of a continued insertion of points. In spite of this disagreement on the structure of the continuum, they did distinguish the temporal line from the spatial line. In this paper, we argue that there is indeed a difference between the intuition of the spatial continuum and the intuition of the temporal continuum. The main primary aspect of the temporal continuum, in contrast with the spatial continuum, is the notion of orientation. The continuum has usually been mathematically modeled by Cauchy sequences and the Dedekind cuts. While in the first model, each point can be approximated by rational numbers, in the second one, that is not possible constructively. We argue that points on the temporal continuum cannot be approximated by rationals as a temporal point is a flow that sinks to the past. In our model, the continuum is a collection of constructive Dedekind cuts, and we define two topologies for temporal continuum: 1. oriented topology and 2. the ordinary topology. We prove that every total function from the oriented topological space to the ordinary one is continuous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.