Abstract

BackgroundPrevious studies have thoroughly elucidated the exposure-response relationship between ambient temperature and hand, foot, and mouth disease (HFMD), whereas very little concern has been to the lag-response relationship and related key time points. ObjectivesWe aimed to clarify the temporal characteristics of the lag-response relationship between ambient temperature and HFMD and how they may vary spatially. MethodsWe retrieved the daily time series of meteorological variables and HFMD counts for 143 cities in mainland China between 2009 and 2014. We estimated the city-specific lag-response curve between ambient temperature and HFMD and related key time points by applying common distributed lag nonlinear models (DLNM) and Monte Carlo simulation methods. Then, we pooled the city-specific estimates by performing a meta-regression with the city-specific characteristics as meta-predictors to explain the potential spatial heterogeneity. ResultsWe found a robust lag pattern between temperature and HFMD for different levels of temperatures. The temporal change of risk obtained its maximum value on the current day but dropped sharply thereafter and then rebounded to a secondary peak, which implied the presence of a harvesting effect. By contrast, the estimation of key time points showed substantial heterogeneity, especially at high temperature (the I2 statistics ranged from 47% to 80%). With one unit increase in the geographic index, the secondary peak would arrive 0.37 (0.02, 0.71) days later. With one unit increase in the economic index and climatic index, the duration time of the lag-response curve would be lengthened by 0.36 (0.1, 0.62) and 0.92 (0.54, 1.29) days, respectively. ConclusionOur study examined the lag pattern and spatial heterogeneity of the lag-response relationship between temperature and HFMD. Those findings gave us new insights into the complex association and the related mechanisms between weather and HFMD and important information for weather-based disease early warning systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.