Abstract
Supercapacitors (SCs) are energy storage devices with a growing interest thanks to their high-power charge and discharge process and long-cycle life. Their main drawback, when compared to more common devices such as batteries, consists in a low energy density. The performances of SCs can however be improved with the coupling of additives to the main active material, which usually is an Activated Carbon. The most common additive is instead Carbon Black (CB), while more recently also Graphene-derived materials have been successfully exploited for this purpose, as the reduced Graphene Oxide (rGO). However, besides raw materials choice, details related to the manufacturing have a leading importance in the attempt to obtain novel active materials with an industrial-ready process which also looks toward the needs of more environmental friendly and economically convenient solutions. In this work, a physical-chemical analysis is performed to show temperature effects on CB, GO and on a CB/GO water-based slurry with helpful results about GO reduction and CB/GO nanocomposite formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.