Abstract

In this work, we propose a strength theory as a function of temperature and state of stresses for metals. Based on the fracture in the hydrostatic stress, we derived a generalized strength model, in which the fracture strength decreases almost linearly with the increasing of the temperature. Furthermore this generalized strength model was extended to the general state of stresses by replacing the equivalent hydrostatic stresses with the temperature effect based on the general thermodynamics principles. Molecular dynamics (MD) simulation was also conducted to simulate the fracture evolution at high temperature and to explain the mechanism of temperature-dependent strength at atomic scale. The proposed model was also verified by experiment of Mo-10Cu alloy at elevated temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call