Abstract

Temperature-programmed desorption (TPD) and in situ Fourier-transform infrared (FT-IR) spectroscopic methods were employed to investigate the effect of loading and sample temperature on the state of benzene molecules inside the channels of NaZSM-5 zeolite. TPD profiles revealed the existence of at least three distinct states of benzene adsorption, characterized by desorption peak maxima at ca. 120°C, 170°C and 220°C, respectively. Based on the growth behaviour of these bands, it is suggested that the benzene molecules occupy sinusoidal channels, straight channels and external surfaces, in that order.A reverse trend was observed during the subsequent flushing of the sample at varying temperatures. A virtually fixed amount of benzene was occluded at these three locations, depending upon the loading. The FT-IR studies revealed that the benzene molecule exists in a compressed state in the zeolitic channels, with the molecular clusters formed in the process dispersing only at temperatures above 150°C. For initial benzene loadings of up to ca. 1.5 molecules/unit cell, the spectrum obtained showed that in the O—H stretch region the bridge-bonded OH groups and hydroxyl groups associated with the internal zeolitic channels were perturbed simultaneously. The results show that even for a loading lower than necessary for saturation, a considerable amount of benzene remains condensed at the external surface of ZSM-5 zeolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.