Abstract

Recent experimental studies of the standard-state heat capacities of aqueous nonelectrolytes at high temperatures make it possible to test predictions made with theoretical equations of state and correlation algorithms. Existing predictive methods are qualitatively correct and produce quantitative results that are in reasonable agreement with the new experimental data at temperature ≤ 350°C, but much better results are possible using new data. Regression of the new data for CO2(aq), H2S(aq), CH4(aq), NH3(aq), and SO2(aq) leads to revised parameters for the revised Helgeson-Kirkham-Flowers (HKF) equation of state. New correlations based on these parameters allow revised regressions of older data for Xe(aq), Ar(aq), and C2H4(aq) and lead to new predictions for several other aqueous nonelectrolytes. These predictions are tested against experimentally determined equilibrium constants for reactions involving several other aqueous nonelectrolytes, including He(aq), Ne(aq), Kr(aq), Rn(aq), H2(aq), N2(aq), O2(aq), and CO(aq). The correlations developed are used to make predictions for a variety of other aqueous nonelectrolytes, allowing incorporation of these species into models of geochemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.