Abstract
High-field W-band electron paramagnetic resonance (EPR) spectroscopy was utilized to study the temperature dependence of the magnetic interaction parameters (g-, hyperfine-, quadrupole tensors) of two types of doublet-state nitroxide spin probes in glass-forming ortho-terphenyl solution: a five-membered ring system of pyrroline type (model for the commonly used methane thiosulfonate spin label) and a six-membered ring system of piperidine type (model for the commonly used TOAC spin label). The analysis of the g- and hyperfine tensors in terms of their isotropic and anisotropic parts reveals at least two mechanisms of motion that are responsible for the temperature dependence of the interaction parameters. The first mechanism is attributed to the overall small-angle motion of the nitroxide molecule in the glassy matrix; it leads to an averaging of the anisotropies of the EPR parameters. The second mechanism originates in an intramolecular out-of-plane motion of oxygen in the nitroxide group. This type of motion is evidenced by comparing the experimental findings for the spin-interaction parameters with the results of density functional theory calculations. The harmonic oxygen out-of-plane vibrations result in a variation of both the isotropic and anisotropic parts of the g- and hyperfine tensors. In contrast, the quadrupole tensor is not influenced by this vibration mechanism in the temperature range under study (90–240 K). Consequences of the applicability of such typical nitroxide radicals for probing details of their protein environment and for studying librational dynamics in frozen solutions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.