Abstract

The Caribbean Mountain System in Venezuela contains rocks formed at high-pressure/low-temperature (HP/LT) conditions by the Cretaceous–Paleocene oblique collision occurred between the Caribbean and South American plates and involving Rodinian-related blocks. 40Ar/39Ar dating of rocks from the Cordillera de la Costa and Margarita Island has constrained key pre- and syntectonothermal events associated with the emplacement of this system.In a Rodinian marble, two phlogopite crystals of different grain sizes yield plateau ages of 888 ± 4 Ma and 874 ± 4 Ma. These results are interpreted as cooling ages after a major anorthosite-mangerite-charnockite-granite-suite intrusion at 920 Ma related to the break-up of Rodinia along the Amazonian–Baltica collisional zone – the Putumayo Orogen. Current plate reconstructions during the Neoproterozoic and previous age results indicate a correlation between the anorthositic complexes located in northwestern Venezuela (Yumare Complex) and southern Norway (Rogaland Complex), suggesting a similar tectonic setting during orogenic relaxation along the Amazonian and Baltica suture. A temperature–time path based on calculated Ar-closure temperatures of phlogopite indicates rapid cooling of 14 ± 4 °C Ma−1 from 920 Ma to 888 Ma, and a very slow to almost isothermal cooling of 4 ± 2 °C Ma−1 from 888 Ma to 874 Ma.On Margarita Island, magnesiohornblende and (alumino) barroisite from HP/LT rocks and muscovite from a leucocratic rock that was intruded before the HP/LT event yield identical ages within error at c. 54–47 Ma, consistent with previous dating results across the island utilizing different isotopic systems. The close association of these rocks and the Manzanillo Shear Zone indicates a main pathway for Ca-rich, 40Ar-free and hot fluids that locally raised the ambient T of the already exhumed and juxtaposed rock units. These fluids crystallized new hornblende and muscovite and thermally reset barroisite. This fluid activity event is 5 Ma younger than the last magmatic activity in the Aves Arc (c. 59 Ma) along its southern edge and related to the opening of the Grenada Basin.In the Cordillera de la Costa, magnesiohornblende, phengite, magnesian siderophyllite, ferroan phlogopite and K-feldspar from rock units of the Carayaca and Ávila terranes yield a wide range of ages (275–20 Ma). The oldest ages (275 Ma and 120 Ma) obtained from the Caruao Metatonalite suggest at least two thermal events at these times and are in agreement with the amalgamation of Pangaea and fluid infiltration, respectively. The remaining ages (35–20 Ma) are consistent with previous results and reflect short-lived fluid infiltrations related to tectonothermal events. A phengite age of 35 Ma from an omphacitite lens in the Antímano Marble of the Carayaca Terrane indicates a younger HP/LT event than previously stated. The preservation of this phengite age and constant Si-content profile indicate a short-lived HP/LT event followed by a very rapid exhumation. At 35–20 Ma rocks from the Ávila Terrane remained at shallower crustal levels than the ones of the Carayaca Terrane, but were thermally affected by tectonism and the infiltration of relatively cold and 40Ar-free fluids causing widespread chloritization of trioctahedral micas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call