Abstract

Crete consists of a nappe pile that formed during Alpine subduction and collision. The lower nappes belong to the External Hellenides, whereas the uppermost nappe is ascribed to the Pelagonian Zone of the Internal Hellenides. The Uppermost Unit consists of several subunits including the Asterousia Crystalline Complex (ACC), which comprises metasedimentary rocks, (meta)granitoids and serpentinite, the protolith age and the tectonometamorphic evolution of which are largely unknown. In the present study, we present new structural, microfabric and geochronological data from the Uppermost Unit in the Melambes area (central Crete). 206Pb/238U zircon ages (LA-ICP-MS and ID-TIMS) indicate granitic and dioritic intrusions between 71.9±0.6 and 76.9±0.3Ma. Identical ages have previously been obtained from comparable intrusions in eastern Crete and on Anafi. The composition and geochemical signature suggest an extended magmatic arc along the southern active margin of the Pelagonian-Lycian Block. Post-intrusive shearing transformed granite into orthogneiss, whereas diorite remained free from foliation, because of the lower amount of mechanically weak phases. Deformation microfabrics suggest top-to-the SE shearing under amphibolite facies conditions of the ACC and at greenschist facies conditions of rocks at the base of the ACC referred to as Akoumianos Greenschist. The Akoumianos Greenschist is considered as the northern part of the Pindos realm that was subducted underneath the Pelagonian-Lycian active margin. Based on our new and on published data, the following orogenic stages are suggested to have contributed to the evolution of the Hellenides during the Late Cretaceous to Eocene: (1) pre-middle Campanian collision and subduction of the Pindos lithosphere underneath the southern margin of the Pelagonian-Lycian terrane led to obduction and offscraping of serpentinized ocean floor and stacking of the ACC during amphibolite facies top-to-the SE thrusting, (2) formation of a Campanian magmatic arc along the Pelagonian-Lycian active margin; (3) Maastrichtian collision and stacking of the magmatic arc during top-to-the SE mylonitic shearing; (4) Palaeocene top-to-the SE greenschist-facies shearing of the ACC on top of the Akoumianos Greenschist; (5) Late Eocene thrusting of the Uppermost Unit on top of the Arvi and Pindos units. Thus, top-to the SE was the dominant shear sense in the southern Aegean from at least the mid-Late Cretaceous until the Eocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call