Abstract
Nowadays, Motor Current Signature Analysis (MCSA) is widely used in the fault diagnosis and condition monitoring of machine tools. However, although the current signal has lower SNR (Signal Noise Ratio), it is difficult to identify the feature frequencies of machine tools from complex current spectrum that the feature frequencies are often dense and overlapping by traditional signal processing method such as FFT transformation. With the study in the Motor Current Signature Analysis (MCSA), it is found that the entropy is of importance for frequency identification, which is associated with the probability distribution of any random variable. Therefore, it plays an important role in the signal processing. In order to solve the problem that the feature frequencies are difficult to be identified, an entropy optimization technique based on motor current signal is presented in this paper for extracting the typical feature frequencies of machine tools which can effectively suppress the disturbances. Some simulated current signals were made by MATLAB, and a current signal was obtained from a complex gearbox of an iron works made in Luxembourg. In diagnosis the MCSA is combined with entropy optimization. Both simulated and experimental results show that this technique is efficient, accurate and reliable enough to extract the feature frequencies of current signal, which provides a new strategy for the fault diagnosis and the condition monitoring of machine tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.