Abstract

The tearing mode (TM) locking and unlocking process due to an external resonant magnetic perturbation (RMP) is experimentally studied in EXTRAP T2R. The RMP produces a reduction of the natural TM velocity and ultimately the TM locking if a threshold in the RMP amplitude is exceeded. During the braking process, the TM slows down via a mechanism composed of deceleration and acceleration phases. During the acceleration phases, the TM can reach velocities higher than the natural velocity. Once the TM locking occurs, the RMP must be reduced to a small amplitude to obtain the TM unlocking, showing that the unlocking threshold is significantly smaller than the locking threshold and that the process is characterized by hysteresis. Experimental results are in qualitative agreement with a model that describes the locking–unlocking process via the balance of the electromagnetic torque produced by the RMP that acts to brake the TM and the viscous torque that tends to re-establish the unperturbed velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.