Abstract

Chaperonins are a class of molecular chaperons that encapsulate nascent or stress-denatured proteins and assist their intracellular assembly and folding in an ATP-dependent manner. The ubiquitous eukaryotic chaperonin, TCP1 ring complex is a hetero-oligomeric complex comprising two rings, each formed of eight subunits that may have distinct substrate recognition and ATP hydrolysis properties. In Leishmania, only the TCP1γ subunit has been cloned and characterized. It exhibited differential expression at various growth stages of promastigotes. In the present study, we expressed the TCP1γ subunit in Escherichia coli to investigate whether it forms chaperonin-like complexes and plays a role in protein folding. LdTCP1γ formed high-molecular-weight complexes within E. coli cells as well as in Leishmania cell lysates. The recombinant protein is arranged into two back-to-back rings of seven subunits each, as predicted by homology modelling and observed by negative staining electron microscopy. This morphology is consistent with that of the oligomeric double-ring group I chaperonins found in mitochondria. The LdTCP1γ homo-oligomeric complex hydrolysed ATP, and was active as assayed by luciferase refolding. Thus, the homo-oligomer performs chaperonin reactions without partner subunit(s). Further, co-immunoprecipitation studies revealed that LdTCP1γ interacts with actin and tubulin proteins, suggesting that the complex may have a role in maintaining the structural dynamics of the cytoskeleton of parasites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.