Abstract

The Tayler instability (TI) is a non-axisymmetric linear instability of an axisymmetric toroidal magnetic field in magneto-hydrostatic equilibrium (MHSE). Spruit (1999, 2002) has proposed that in a differentially rotating radiative region of a star, the TI drives a dynamo which generates magnetic fields that can efficiently transport angular momentum; a parameterized version of this dynamo has been implemented in stellar structure and evolution codes and shown to be important for determining interior spin. Numerical simulations, however, have yet to definitively demonstrate the operation of the dynamo. A criterion for the MHSE to develop the TI was derived using fully-compressible magneto-hydrodynamics, while numerical simulations of dynamical processes in stars frequently use an anelastic approximation. This motivates us to derive a new anelastic Tayler instability (anTI) criterion. We find that some MHSE configurations unstable in the fully-compressible case, become stable in the anelastic case. We find and characterize the unstable modes of a simple family of cylindrical MHSE configurations using numerical calculations, and discuss the implications for fully non-linear anelastic simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call