Abstract

The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin’s localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding gag clusters and clutching uninfected T-cells. Finally, we detected Fascin and gag in long-distance cellular protrusions. Taken together, we show for the first time that HTLV-1 usurps the host cell factor Fascin to foster virus release and cell-to-cell transmission.

Highlights

  • Human T-cell leukemia virus type 1 (HTLV-1), which infects approximately 5–10 million people worldwide [1], is the only human retrovirus causing cancer: adult T-cell leukemia/lymphoma (ATL), a fatal neoplasia of CD4+ T-cells [2,3,4]

  • The viral protein Tax and polarization of the host cell cytoskeleton are crucial for formation of the virological synapse (VS), only little is known about the link between Tax and remodeling of the cytoskeleton to foster viral spread

  • We show that Fascin is crucial for release and transmission of the tumorvirus HTLV-1

Read more

Summary

Introduction

Human T-cell leukemia virus type 1 (HTLV-1), which infects approximately 5–10 million people worldwide [1], is the only human retrovirus causing cancer: adult T-cell leukemia/lymphoma (ATL), a fatal neoplasia of CD4+ T-cells [2,3,4]. HTLV-1 is the causative agent of a neurodegenerative, inflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) [5,6]. Both diseases can develop as a consequence of prolonged viral persistence in T-cells after a clinical latency of decades in 1–5% (ATL) or 3–5% (HAM/TSP) of infected individuals [7,8]. HTLV-1 replicates either by infecting new cells or by mitotic division and clonal expansion of infected T-cells [14,15,16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call