Abstract

We show how some results of the theory of iterated function systems can be derived from the Tarski–Kantorovitch fixed–point principle for maps on partialy ordered sets. In particular, this principle yields, without using the Hausdorff metric, the Hutchinson–Barnsley theorem with the only restriction that a metric space considered has the Heine–Borel property. As a by–product, we also obtain some new characterisations of continuity of maps on countably compact and sequential spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.