Abstract

Suicide gene therapy has become an effective therapy for breast cancer, and ultrasound targeted microbubble destruction (UTMD) has become a popular topic in the gene therapy field. In this study, MCF-7 cells with the KDR promoter and LSl74T cells without the KDR promoter were transfected with the recombinant plasmid pEGFP-KDRP-CD/TK using UTMD. The recombinant plasmid pEGFP-KDRP-CD/TK was transfected into MCF-7 and LS174T cells successfully with no significant difference in transfection efficiency ( p > 0.05). By RT-PCR, the CD/TK fusion gene was shown to be expressed in MCF-7 cells but not expressed in LS174T cells. In a cytotoxicity experiment, transgenic MCF-7 cells were sensitive to the prodrugs 5-FC and GCV. When both 5-FC and GCV were administered, the rate of cellular inhibition was significantly greater than that achieved when only one of the prodrugs was administered ( p < 0.001). Moreover, the inhibition rates achieved administering 5-FC, GCV and both 5-FC and GCV were all significantly greater than the gene transfection rate of 21.92 ± 3.64% ( p < 0.001). However, transgenic LS174T cells were not sensitive to any prodrug. These results demonstrated that UTMD is a safe, effective and targeted gene delivery system. Also, the KDR promoter can drive expression of the CD/TK double suicide gene target in MCF-7 cells, and the targeted killing effect of the KDRP-CD/TK gene on MCF-7 cells in vitro has good synergy with expression of the CD/TK fusion gene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call