Abstract

BackgroundNTPases (also NTPDases) are enzymes with apyrase activity. They are widely distributed among eukaryotes, and also among members of the family Sarcocystidae. In Toxoplasma gondii, the TgNTPase accumulates in the dense granules, and has been commonly associated with the strain virulence. In the closely related Neospora caninum, the NcNTPase lacks nucleoside diphosphate hydrolase activity and appears to be more abundant in virulent isolates, indicating that it may contribute to the pathogenicity of neosporosis. However, so far no additional information on NcNTPase has been provided.MethodsHerein, the NcNTPase coding sequences were analysed by different in silico and de novo sequencing approaches. A comparative analysis of NcNTPase and NcGRA7 in terms of protein dynamics, secretion, phosphorylation, and mRNA expression profiles during the tachyzoite lytic cycle was also carried out. Moreover, NcNTPase immunolocalization was analysed by confocal microscopy techniques over a set number of time-points.ResultsWe describe the presence of three different loci containing three copies of the NcNTPase within the Nc-Liv genome, and report the existence of up to four different NcNTPase alleles in Nc-Liv. We also provide evidence for the occurrence of diverse protein species of the NcNTPase by two-dimensional gel electrophoresis. Both NcNTPase and NcGRA7 were similarly up-regulated and secreted during the egress and/or early invasion phases, and were phosphorylated. However, its secretion was not affected by the addition of calcium modulators such as A23187 and ethanol. NcNTPase and NcGRA7 localized in dense granules and parasitophorous vacuole membrane throughout the lytic cycle, although differed in their inmunolocalization during early invasion and egress.ConclusionsThe present study reveals the complexity of the NcNTPase loci in N. caninum. We hypothesize that the expression of different isoforms of the NcNTPase protein could contribute to parasite virulence. Our findings showed regulation of expression, secretion and phosphorylation of NcNTPase suggesting a potential role for progression through the tachyzoites lytic cycle.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1620-4) contains supplementary material, which is available to authorized users.

Highlights

  • NTPases ( NTPDases) are enzymes with apyrase activity

  • Only a limited number of granule proteins (GRA) proteins have been studied in N. caninum, despite the fact that some GRA proteins such as TgGRA7, TgGRA15, TgGRA16, TgGRA24, TgGRA25 and TgNTPase I, among others, contribute to virulence in T. gondii [13,14,15,16,17]

  • The previously characterized NcGRA7 was included in this study mainly for comparative purposes, we present some new and undescribed aspects of this GRA protein

Read more

Summary

Introduction

NTPases ( NTPDases) are enzymes with apyrase activity. They are widely distributed among eukaryotes, and among members of the family Sarcocystidae. In the closely related Neospora caninum, the NcNTPase lacks nucleoside diphosphate hydrolase activity and appears to be more abundant in virulent isolates, indicating that it may contribute to the pathogenicity of neosporosis. The lytic cycle has been extensively studied in the closely related parasite Toxoplasma gondii [4, 5], but only scarcerly investigated in N. caninum. Micronemes, rhoptries, and dense granules are secretory organelles exclusively found in apicomplexan parasites. The contents of these organelles are sequentially released during the lytic cycle, and play a crucial role in the host-parasite interactions. Only a limited number of GRA proteins have been studied in N. caninum, despite the fact that some GRA proteins such as TgGRA7, TgGRA15, TgGRA16, TgGRA24, TgGRA25 and TgNTPase I, among others, contribute to virulence in T. gondii [13,14,15,16,17]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.