Abstract
Research in swarm robotics focuses mostly on how robots interact and cooperate to perform tasks, rather than on the details of task execution. As a consequence, researchers often consider abstract tasks in their experimental work. For example, foraging is often studied without physically handling objects: the retrieval of an object from a source to a destination is abstracted into a trip between the two locations—no object is physically transported. Despite being commonly used, so far task abstraction has only been implemented in an ad hoc fashion. In this paper, we propose a new approach to abstracting complex tasks in swarm robotics research. This approach is based on a physical device called the “task abstraction module” (TAM) that abstracts single-robot tasks to be performed by an e-puck robot. A complex multi-robot task can be abstracted using a group of TAMs by first modeling the task as the set of its constituent single-robot subtasks and then abstracting each subtask with a TAM. We present a collection of tools for modeling complex tasks, and a framework for controlling a group of TAMs such that the behavior of the group implements the model of the task. The TAM enables research on cooperative behaviors and complex tasks with simple, cost-effective robots such as the e-puck—research that would be difficult and costly to conduct using specialized robots or ad hoc task abstraction. We demonstrate how to abstract a complex task with multiple TAMs in an example scenario involving a swarm of e-puck robots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.