Abstract

Abstract A regional spectral model (RSM) is developed at the Taiwan Central Weather Bureau (CWB). It is based on the same model structure, dynamics, and physics of the CWB global spectral model (GSM) and the perturbation concept of the National Centers for Environmental Prediction (NCEP) RSM for lateral boundary treatment. The advantages of this new regional model include minimization of possible inconsistency between GSM and RSM through lateral boundary influence and reduction of resources used to manage and maintain the model. One-dimensional decomposition is utilized to slice the model into subdomains to run on a massive parallel-processor machine. The Message-Passing Interface (MPI) is adopted to communicate among each subdomain. The computational dependency, such as the summation in spectral transformation, is a restriction for the decomposition, so that the reproducibility using different numbers of processors is achieved. The performance in terms of wall-clock time follows the theoretical curve of parallelization. It can reach 95% parallelization by “homemade” PC Linux cluster, and 90% by CWB Fujitsu VPP5000. One case is selected to perform 2-month integration in a simulation mode and a forecast mode. The results indicate a reasonable monsoon frontal evolution as compared with analysis, and it has similar or less root-mean-square error (rmse) as compared to that of CWB GSM. The same run with NCEP RSM nested into CWB GSM shows a larger rmse than CWB RSM; it demonstrates the advantage of having the same model structure, dynamics, and physics between CWB GSM and CWB RSM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.