Abstract

Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process.

Highlights

  • Recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins

  • Among the various factors required for this process, we demonstrated that the H2-T6SS machinery (Figure 1) promotes the uptake of P. aeruginosa into pulmonary epithelial cells but, at the time, the identity of the cognate effector(s) involved remained to be discovered (Sana et al, 2012)

  • The T6SS machineries of P. aeruginosa must be considered as versatile weapons that are able to target both prokaryotic and eukaryotic cells

Read more

Summary

Introduction

Recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. P. aeruginosa targets other bacteria through H1T6SS dependent injection of effector Tse2 and produces an anti-toxin Tsi2, protecting itself against the intrinsic effect of the toxin and from attack by sister-cells (Hood et al, 2010).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.