Abstract
Lysis inhibition (LIN) of T4-infected cells was one of the foundational experimental systems for modern molecular genetics. In LIN, secondary infection of T4-infected cells results in a dramatically protracted infection cycle in which intracellular phage and endolysin accumulation can continue for hours. At the molecular level, this is due to the inhibition of the holin, T, by the antiholin, RI. RI is only 97 residues and contains an N-terminal hydrophobic domain and a C-terminal hydrophilic domain; expression of the latter domain fused to a secretory signal sequence is sufficient to impose LIN, due to its specific interaction with the periplasmic domain of the T holin. Here we show that the N-terminal sequence comprises a signal anchor release (SAR) domain, which causes the secretion of RI in a membrane-tethered form and then its subsequent release into the periplasm, without proteolytic processing. Moreover, the SAR domain confers both functional lability and DegP-mediated proteolytic instability on the released form of RI, although LIN is not affected in a degP host. These results are discussed in terms of a model for the activation of RI in the establishment of the LIN state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.