Abstract

T-box factors comprise an archaic family of evolutionary conserved transcription factors that regulate patterns of gene expression essential for embryonic development. The T-box transcription factor 3 (TBX3), a member of this family, is expressed in several tissues and plays critical roles in, among other structures, the heart, mammary gland and limbs and haploinsufficiency of the human TBX3 gene is the genetic basis for the autosomal dominant disorder, ulnar-mammary syndrome. Overexpression of TBX3 on the other hand has been linked to several cancers including melanoma, breast, pancreatic, liver, lung, head and neck, ovarian, bladder carcinomas and a number of sarcoma subtypes. Furthermore, there is strong evidence that TBX3 promotes oncogenesis by impacting proliferation, tumour formation, metastasis as well as cell survival and drug resistance. More recently, TBX3 was however shown to also have tumour suppressor activity in fibrosarcomas and thus its functions in oncogenesis appear to be context dependent. Identification of the upstream regulators of TBX3 and the molecular mechanism(s) underpinning its oncogenic roles will make valuable contributions to cancer biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.