Abstract
The T box and S box transcription termination control systems are widely used for control of gene expression in Gram-positive bacteria, but are rare in Gram-negative organisms. Both of these systems can be recognized in genomic data because of high conservation of primary sequence and structural elements. The T box system regulates a variety of amino acid-related genes, while the S box system is dedicated to genes involved in methionine metabolism. While both systems involve gene regulation at the level of premature termination of transcription, the molecular mechanisms employed are very different. In the T box system, expression is induced by stabilization of an antiterminator structure in the leader by interaction with the cognate uncharged tRNA; this prevents formation of the competing terminator helix, allowing synthesis of the full-length mRNA. Disruption of conserved leader features results in loss of readthrough. In the S box system, the antiterminator form of the leader is the more stable form. A competing anti-antiterminator must be stabilized by an unknown factor during growth in methionine to prevent formation of the antiterminator, thereby allowing formation of the terminator helix. Disruption of conserved leader elements results in constitutive expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers in bioscience : a journal and virtual library
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.