Abstract
This year marks the 50th anniversary of a nearly forgotten hypothesis on aging by Leo Szilard, best known for his pioneering work in nuclear physics, his participation in the Manhattan Project during World War II, his opposition to the nuclear arms race in the postwar era, and his pioneering ideas in biology. Given a specific set of assumptions, Szilard hypothesized that the major reason for the phenomenon of aging was aging hits, e.g., by ionizing radiation, to the gene-bearing chromosomes and presented a mathematical target-hit model enabling the calculation of the average and maximum life span of a species, as well as the influence of increased exposure to DNA-damaging factors on life expectancy. While many new findings have cast doubt on the specific features of the model, this was the first serious effort to posit accumulated genetic damage as a cause of senescence. Here, we review Szilard's assumptions in the light of current knowledge on aging and reassess his mathematical model in an attempt to reach a conclusion on the relevance of Szilard's aging hypothesis today.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.