Abstract

In this paper, we study the Szeged index of partial cubes and hence generalize the result proved by Chepoi and Klavžar, who calculated this index for benzenoid systems. It is proved that the problem of calculating the Szeged index of a partial cube can be reduced to the problem of calculating the Szeged indices of weighted quotient graphs with respect to a partition coarser than Θ-partition. Similar result for the Wiener index was recently proved by Klavžar and Nadjafi-Arani. Furthermore, we show that such quotient graphs of partial cubes are again partial cubes. Since the results can be used to efficiently calculate the Wiener index and the Szeged index for specific families of chemical graphs, we consider C4C8 systems and show that the two indices of these graphs can be computed in linear time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.