Abstract

Autoregulation of nodulation (AON), a systemic signaling pathway in legumes, limits the number of nodules formed by the legume in its symbiosis with rhizobia. Recent research suggests a model for the systemic regulation in Medicago truncatula in which root signaling peptides are translocated to the shoot where they bind to a shoot receptor complex containing the leucine-rich repeat receptor-like kinase SUNN, triggering signal transduction which terminates nodule formation in roots. Here we show that a tagged SUNN protein capable of rescuing the sunn-4 phenotype is localized to the plasma membrane and is associated with the plasmodesmata. Using bimolecular fluorescence complementation analysis we show that, like its sequence ortholog Arabidopsis CLV1, SUNN interacts with homologous CLV1-interacting proteins MtCLAVATA2 and MtCORYNE. All three proteins were also able to form homomers and MtCRN and MtCLV2 also interact with each other. A crn Tnt1 insertion mutant of M. truncatula displayed a shoot controlled increased nodulation phenotype, similar to the clv2 mutants of pea and Lotus japonicus. Together these data suggest that legume AON signaling could occur through a multi-protein complex and that both MtCRN and MtCLV2 may play roles in AON together with SUNN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.