Abstract
Gymnosperms originated in the Middle Devonian and have experienced a long evolutionary history with pulses of speciation and extinction, which resulted in the four morphologically distinct extant groups, i.e., cycads, Ginkgo, conifers and gnetophytes. For over a century, the systematic relationships within the extant gymnosperms have been debated because different authors emphasized different characters. Recent phylogenomic studies of gymnosperms have given a consistent topology, which aligns well with extant gymnosperms classified into three classes, five subclasses, eight orders, and 13 families. Here, we review the historical opinions of systematics of gymnosperms with special reference to several problematic taxa and reconsider the evolution of some key morphological characters previously emphasized by taxonomists within a phylogenomic context. We conclude that (1) cycads contain two families, i.e., the Cycadaceae and the Zamiaceae; (2) Ginkgo is sister to cycads but not to conifers, with the similarities between Ginkgo and conifers being the result of parallel evolution including a monopodial growth pattern, pycnoxylic wood in long shoots, and the compound female cones, and the reproductive similarities between Ginkgo and cycads are either synapomorphic or plesiomorphic, e.g., the boat-shaped pollen, the branched pollen tube, and the flagellate sperms; (3) conifers are paraphyletic with gnetophytes nested within them, thus gnetophytes are derived conifers, and our newly delimited coniferophytes are equivalent to the Pinopsida and include three subclasses, i.e., Pinidae, Gnetidae, and Cupressidae; (4) fleshy cones of conifers originated multiple times, the Podocarpaceae are sister to the Araucariaceae, the Cephalotaxaceae and the Taxaceae comprise a small clade, which is sister to the Cupressaceae; (5) the Cephalotaxaceae are distinct from the Taxaceae, because the former family possesses typical female cones and the fleshy part of the seed is derived from the fleshiness of integument, while the latter family has reduced female cones and preserves no traces of the seed scale complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.