Abstract

AbstractNanostructured materials can exhibit phase change behavior that deviates from the macroscopic phase behavior. This is exemplified by the ambiguity for the equilibrium phases driving the first open‐circuit voltage (OCV) plateau for the lithiation of Fe3O4 nanocrystals. Adding complexity, the relaxed state for LixFe3O4 is observed to be a function of electrochemical discharge rate. The phases occurring on the first OCV plateau for the lithiation of Fe3O4 nanocrystals have been investigated with density functional theory (DFT) through the evaluation of stable, or hypothesized metastable, reaction pathways. Hypotheses are evaluated through the systematic combined refinement with X‐ray absorption spectroscopy (XAS), X‐ray diffraction (XRD) measurements, neutron‐diffraction measurements, and the measured OCV on samples lithiated to x = 2.0, 3.0, and 4.0 in LixFe3O4. In contrast to the Li–Fe–O bulk phase thermodynamic pathway, Fe0 is not observed as a product on the first OCV plateau for 10–45 nm nanocrystals. The phase most consistent with the systematic refinement is LiFe3O4, showing Li+Fe cation disorder. The observed equilibrium concentration for conversion to Fe0 occurs at x = 4.0. These definitive phase identifications rely heavily on the systematic combined refinement approach, which is broadly applicable to other nano‐ and mesoscaled systems that have suffered from difficult or crystallite‐size‐dependent phase identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.