Abstract

The system of combinatory logic to be presented in this paper will be called CΔ. It may be compared to various systems of combinatory logic constructed by Schonfinkel [11], Curry [1], Rosser [10], and Curry and Feys [2], and to the author's systems K′ [3] and S [5], and to extensional modifications of K′ [6], [7], [8], [9]. The present system falls within this latter category of extensional or semi-extensional systems, but it is more perspicuous than the others, and the proof of its consistency is more direct. It contains the theory of combinators in full strength. It also contains operators for disjunction, conjunction, negation, existence (that is, non-emptiness), and universality. A considerable part of classical mathematical analysis can be shown to be derivable in CΔ, just as in K′ [4], but with the added advantage of the availability of a limited extensionality principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.