Abstract
The alpha chain 572–574 Arg-Gly-Asp sequence of fibrinogen appears to play only a minor role in platelet aggregation based on the ability of fibrinogen preparations lacking alpha chain carboxyterminal segments to support platelet aggregation, but synthetic Arg-Gly-Asp-Ser (RGDS) peptides are capable of inhibiting platelet aggregation and fibrinogen binding. The present study thus examined the ability of RGDS peptides to inhibit platelet interactions with a plasmic degradation product of fibrinogen (8D–50) that resembles an intermediate fragment X. Gel- filtered, human blood platelets suspended in 0.01 mol/L HEPES-buffered modified Tyrode's solution, pH 7.5, were stimulated with 20 mumol/L adenosine diphosphate and the binding of 125I-labeled 8D–50 or intact fibrinogen (0.01 to 0.6 mg/mL) assessed in the presence of 0 to 117 mumol/L RGDS. The data revealed that RGDS decreased the apparent affinity of 8D–50 and intact fibrinogen for platelets but did not affect the maximum number of binding sites. RGDS thus appears to be a competitive inhibitor not only of intact fibrinogen (Ki = 12 +/- 2 mumol/L) but also of 8D–50 (Ki = 15 +/- 3 mumol/L) (mean +/- SD, n = 3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.