Abstract

BackgroundHeparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit in vitro and in vivo the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop.MethodsA total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. In vitro, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. In vivo, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. In vivo anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay.ResultsUsing pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. In vitro, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an in vivo Matrigel™ plug assay in miceConclusionsOur results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on in vitro and in vivo growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). In vivo, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types.

Highlights

  • Heparin affin regulatory peptide (HARP), called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis

  • Previously, it has been shown that peptide P111-136, structurally related to the C-terminal domain of HARP, inhibited the mitogenic activity induced by HARP

  • It was shown that P111-136 inhibited the in vitro growth of the human breast cancer cell line MDAMB 231 suggesting that P111-136 blocked the autocrine stimulation loop of HARP

Read more

Summary

Introduction

Heparin affin regulatory peptide (HARP), called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. Among the growth-factor families involved in prostate-cancer progression, Transforming Growth Factor-beta (TGFb), Fibroblast Growth Factors (FGFs), Epidermal Growth Factor (EGF) and heparin affin regulatory peptide (HARP) were reported to play a prominent role [3]. HARP protein was associated with epithelial cells in prostate cancer but not in normal prostate tissue and the mRNAs were located in the stromal compartment, suggesting a paracrine mechanism of action for HARP [11]. The growthpromoting effect of HARP on prostate cancer cells was confirmed using an antisense strategy, which established HARP as an important autocrine growth factor for the LNCaP prostate-cancer cell line and as a paracrine factor involved in angiogenesis [12]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.