Abstract

This paper describes a new relative technique developed at LNE-Cnam, for the determination of the thermodynamic temperature of blackbodies without recourse to a radiometric reference. This technique is referred to as the ‘synthetic double wavelength technique’ (SDWT) as it is considered to be a particular case of the ‘double wavelength technique’ (DWT). It offers a new experimental technique for the determination of the thermodynamic temperature at high temperature and as such a new means for the mise-en-pratique of the new definition of the kelvin achievable by any national metrology institute provided a multi-wavelength radiation thermometer combining large and narrow bandwidths is available. In this work, a first experimental implementation of this technique based on a wavelength-tuneable spectroradiometer providing both narrowband and broadband signals with the particularity of the broadband signal being virtually synthesised from the spectral distribution of the narrowband signals sampled over a wide spectral range. SDWT determination of the thermodynamic temperature of a blackbody at 2760 K was performed with a level of uncertainty that confirms the promising capabilities of this technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.