Abstract

The aim of this study was to probe the potential anti-H. pylori activity of the synthetic antimicrobial peptide pexiganan, which is an analog of the peptide magainin, and its nanoparticles (PNPs) that were prepared in our laboratory. To compare their antibacterial effects in vitro and in vivo, studies of H. pylori growth inhibition, kinetics and resistance assays were undertaken. The gastric mucoadhesive efficiency and H. pylori clearance efficiency of pexiganan and PNPs were evaluated in rats and mice infected with H. pylori. The eradication of H. pylori was determined using urease tests and a microbial culture method. We observed that PNPs adhered to gastric mucosa more effectively owing to a prolonged stay in the stomach, which resulted in a more effective H. pylori clearance. In addition, PNPs had greater anti-H. pylori effect than pexiganan in infected mice. The amount of pexiganan required to eradicate H. pylori was significantly less using PNPs than the corresponding pexiganan suspension. The results confirmed that PNPs improved peptide stability in the stomach and more effectively eradicated H. pylori from mice stomachs than pexiganan.

Highlights

  • H. pylori is a Gram-negative microaerophile bacillus that often infects humans during childhood

  • The in vitro H. pylori growth inhibition studies, kinetics studies and resistance assays were studied through comparison of pexiganan to PNPs

  • The bactericidal activity kinetics against H. pylori clinical strains were studied at 16 μg/mL

Read more

Summary

Introduction

H. pylori is a Gram-negative microaerophile bacillus that often infects humans during childhood. It colonizes gastric mucosa of nearly 50% of the world’s population and, in some cases, for life. H. pylori plays a major role in most cases of gastric duodenal ulcers, gastritis, and gastric cancer [1], eradicating H. pylori infection is a very valuable strategy for curing a gastric or duodenal ulcer and is likely to be a promising approach to prevent the occurrence of gastric cancer [2]. The high cost of therapy, harmful side effects, and poor treatment compliance due to patients’ lack of willingness to take so many different drugs are major drawbacks in the treatment of H. pylori infections [3,4]. Treatment failure is generally due to increased antimicrobial drug resistance [5].

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.