Abstract
The discovery of functional molecules is an expensive and time-consuming process, exemplified by the rising costs of small molecule therapeutic discovery. One class of techniques of growing interest for early stage drug discovery is de novo molecular generation and optimization, catalyzed by the development of new deep learning approaches. These techniques can suggest novel molecular structures intended to maximize a multiobjective function, e.g., suitability as a therapeutic against a particular target, without relying on brute-force exploration of a chemical space. However, the utility of these approaches is stymied by ignorance of synthesizability. To highlight the severity of this issue, we use a data-driven computer-aided synthesis planning program to quantify how often molecules proposed by state-of-the-art generative models cannot be readily synthesized. Our analysis demonstrates that there are several tasks for which these models generate unrealistic molecular structures despite performing well on popular quantitative benchmarks. Synthetic complexity heuristics can successfully bias generation toward synthetically tractable chemical space, although doing so necessarily detracts from the primary objective. This analysis suggests that to improve the utility of these models in real discovery workflows, new algorithm development is warranted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.