Abstract
A synthesis of peptidylfluoromethanes is described that utilizes the conversion of phthaloyl amino acids into their fluoromethane derivatives. These can be deblocked and elongated. The inactivation of chymotrypsin by Cbz-Phe-CH2F (benzyloxycarbonylphenylalanylfluoromethane) was found to be considerably slower than that of the analogous chloromethane. The fluoromethane analogue inactivates chymotrypsin with an overall rate constant that is 2% of that observed for the inactivation of the enzyme with the chloromethane. However, the result is the same. The reagent complexes in a substrate-like manner, with Ki = 1.4 X 10(-4) M, and alkylates the active-centre histidine residue. Cbz-Phe-Phe-CH2F and Cbz-Phe-Ala-CH2F were investigated as inactivators of the cysteine proteinase cathepsin B. The difference in reactivity between fluoromethyl ketones and chloromethyl ketones is less pronounced in the case of the cysteine proteinase than for the serine proteinase. Covalent bond formation takes place in this case also, as demonstrated by the use of a radiolabelled reagent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.