Abstract

Due to rare earth doping, phosphates and vanadates are the leading materials for the synthesis of phosphors due to their thermal stability, low sintering temperature, and chemical stability. Phosphors in the nanoscale state are of particular interest. The simple, fast, and scalable synthesis of nanophosphors with high chemical homogeneity is a priority task. The purpose of this work was to synthesize powders of mixed yttrium vanadate-phosphate crystals of various compositions by coprecipitation under the action of microwave radiation and spray pyrolysis, as well as to compare the characteristics ofthe obtained samples. Samples of YVхP1–хO4 of different compositions were synthesized by coprecipitation under the action of microwave radiation and spray pyrolysis in different modes. In the case of the synthesis of yttrium vanadate-phosphate YVхP1–хO4 by spray pyrolysis followed by annealing, according to the X-ray phase analysis data, single-phase nanopowders were formed. The morphological characteristics of the samples were revealed by the methods of transmission electron microscopy and scanning electron microscopy. Depending on the annealing conditions, the samples were either faceted or spherical particlesless than 100 nm in size. The composition of the YVхP1–хO4 , samples synthesized by the coprecipitation method under the action of microwave radiation strongly depended on the pH of the precursor solution. The minimum content of impurity phases was reached at pH 9.Spray pyrolysis allows the synthesis of yttrium vanadate phosphate YVхP1–хO4 nanopowders of high chemical homogeneity with a particle size of less than 100 nm. The maximum chemical homogeneity of yttrium vanadate-phosphate powders was achieved at pH = 9 during the synthesis of YVхP1–хO4 by coprecipitation under the action of microwave radiation. However, the particle size dispersion was large, within the range of 2–60 μm.
  
  
  
 References
 1. Wu C., Wang Y., Jie W. Hydrothermal synthesisand luminescent properties of LnPO4:Tb (Ln = La, Gd)phosphors under VUV excitation. Journal of Alloys andCompounds. 2007;436: 383–386. DOI: https://doi.org/10.1016/j.jallcom.2006.07.0562. Huang J., Tang L., Chen N., Du G. Broadeningthe photoluminescence excitation spectral bandwidthof YVO4:Eu3+ nanoparticles via a novel core-shell andhybridization approach. Materials. 2019;12: 3830. DOI:https://doi.org/10.3390/ma122338303. Wu Y., Zhang Z., Suo H., Zhao X., Guo C. 808 nmlight triggered up-conversion optical nano-thermometerYPO4:Nd3+/Yb3+/Er3+ based on FIR technology.Journal of Luminescence. 2019;214: 116478. DOI:https://doi.org/10.1016/j.jlumin.2019.1165784. Xiu Z., Wu Y., Hao X., Li X., Zhang L. Uniformand well-dispersed Y2O3:Eu/YVO4:Eu composite microsphereswith high photoluminescence prepared bychemical corrosion approach. Colloids Surf. A.2012;401(5): 68–73. DOI: https://doi.org/10.1016/j.colsurfa.2012.03.0215. Vats B. G., Gupta S. K., Keskar M., Phatak R.,Mukherjee S., Kannan S. The effect of vanadium substitutionon photoluminescent properties of KSrLa(-PO4)x(VO4)2x:Eu3+ phosphors, a new variant of phosphovanadates.New Journal of Chemistry. 2016;40(2):1799–1806. DOI: https://doi.org/10.1039/c5nj02951a6. Riwotzki K., Haase M. Colloidal YVO4:Eu andYP0.95V0.05O4:Eu nanoparticles: luminescence and energytransfer processes. The Journal of Physical ChemistryB. 2001;105(51): 12709–12713. DOI: https://doi.org/10.1021/jp01137357. Wu C.-C., Chen K.-B., Lee C.-S., Chen T.-M.,Cheng B.-M. Synthesis and VUV photoluminescencecharacterization of (Y,Gd)(V,P)O4:Eu3+ as a potentialred-emitting PDP phosphor. Chem. Mater. 2007;19(13):3278–3285. DOI: https://doi.org/10.1021/cm061042a8. Shimomura Y., Kurushima T., Olivia R., Kijima N.Synthesis of Y(P,V)O4:Eu3+ red phosphor by spray pyrolysiswithout postheating. The Japan Society of Applied.2005;44(3): 1356–1360. DOI: https://doi.org/10.1143/JJAP.44.13569. Lai H, Chen B., Xu W., Xie Y., Wang X., Di W. Fineparticles (Y,Gd)PxV1−xO4:Eu3+ phosphor for PDP preparedby coprecipitation reaction. Materials Letters.2006; 60 (11): 1341-1343. DOI: https://doi.org/10.1016/j.matlet.2005.11.05110. Singh V., Takami S., Aoki N., Hojo D., Arita T.,Adschiri T. Hydrothermal synthesis of luminescentGdVO4:Eu nanoparticles with dispersibility in organicsolvents. Journal of Nanoparticle Research. 2014;16(5):2378. DOI: https://doi.org/10.1007/s11051-014-2378-211. Song W.-S., Kim Y.-S., Yang H. Hydrothermalsynthesis of self-emitting Y(V,P)O4 nanophosphors forfabrication of transparent blue-emitting display device.Journal of Luminescence. 2012;132(5): 1278–1284.DOI: https://doi.org/10.1016/j.jlumin.2012.01.01512. Yu M., Lin J., Fu J., Han Y. Sol–gel fabrication,patterning and photoluminescent properties ofLaPO4:Ce3+, Tb3+ nanocrystalline thin films. ChemicalPhysics Letters. 2003;5(1-2): 178–183. DOI: https://doi.org/10.1016/S0009-2614(03)00239-213. Raoufi D., Raoufi T. The effect of heat treatmenton the physical properties of sol–gel derived ZnO thinfilms. Applied Surface Science. 2009;255(11): 5812–5817. DOI: https://doi.org/10.1016/j.ap-susc.2009.01.01014. Shao J., Yan J., Li X., Li S., Hu T. Novel fluorescentlabel based on YVO4:Bi3+, Eu3+ for latent fingerprintdetection. Dyes and Pigments. 2019;160: 555–562.DOI: https://doi.org/10.1016/j.dyepig.2018.08.03315. Dolinskaya Yu. A., Kolesnikov I. E., KurochkinA. V., Man’shina A. A., Mikhailov M. D., SemenchaA. V. Sol-Gel synthesis and luminescent propertiesof YVO4: Eu nanoparticles. Glass Physics and Chemistry.2013;39(3): 308–310. DOI: https://doi.org/10.1134/s108765961303006116. Tomina E. V., Sladkopevtsev B. V., Knurova M. V.,Latyshev A.N., Mittova I. Y., Mittova V. O. Microwavesynthesis and luminescence properties of YVO4:Eu3+.Inorganic Materials. 2016;52(5): 495–498. DOI: https://doi.org/10.7868/S0002337X1605017117. Tomina E. V., Mittova I. J., Burtseva N. A.,Sladkopevtsev B. V. Method for synthesis of yttrium orthovanadate-based phosphor: patent for invention No2548089. The patent holder FGBOU VPO “Voronezhstate University” No 2013133382/05; declared12.11.2013; published. 20.05.2015.18. Tomina E. V., Kurkin N. A., & Mal’tsev S. A.Microwave synthesis of yttrium orthoferrite dopedwith nickel. Kondensirovannye sredy i mezhfaznyegranitsy = Condensed Matter and Interphases.2019;21(2): 306–312. DOI:https://doi.org/10.17308/kcmf.2019.21/768 (In Russ., abstract in Eng.)19. Huang J., Gao R., Lu Z., Qian D., Li W., Huang B.,He X. Sol–gel preparation and photoluminescenceenhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors.Optical Materials. 2010;32(9): 857–861.DOI: https://doi.org/10.1016/j.optmat.2009.12.01120. Brandon D., Kaplan W. D. MicrostructuralCharacterization of Materials. John Wiley & Sons Ltd;1999. 409 p. DOI: https://doi.org/10.1002/9780470727133

Highlights

  • Оригинальная статьяЦелью работы являлся синтез порошков смешанных кристаллов ванадат-фосфата иттрия различного состава методами соосаждения под действием микроволнового излучения и спрей-пиролиза, а также сравнительный анализ характеристик полученных образцов.

  • Методами соосаждения под действием микроволнового излучения и спрей-пиролиза в различных режимах синтезированы образцы YVхP1–хO4 разного состава.

  • Данные рентгенофазового анализа в случае синтеза ванадатфосфата иттрия YVхP1–хO4 методом спрей-пиролиза с последующим отжигом подтверждают образование однофазных нанопорошков.

Read more

Summary

Оригинальная статья

Целью работы являлся синтез порошков смешанных кристаллов ванадат-фосфата иттрия различного состава методами соосаждения под действием микроволнового излучения и спрей-пиролиза, а также сравнительный анализ характеристик полученных образцов. Методами соосаждения под действием микроволнового излучения и спрей-пиролиза в различных режимах синтезированы образцы YVхP1–хO4 разного состава. Данные рентгенофазового анализа в случае синтеза ванадатфосфата иттрия YVхP1–хO4 методом спрей-пиролиза с последующим отжигом подтверждают образование однофазных нанопорошков. Состав образцов YVхP1–хO4, синтезированных методом соосаждения под действием микроволнового излучения, сильно зависит от рН раствора прекурсоров. Метод спрей-пиролиза позволяет синтезировать нанопорошки ванадат-фосфата иттрия YVхP1–хO4 высокой химической гомогенности с размером частиц менее 100 нм. При синтезе YVхP1–хO4 методом соосаждения под действием микроволнового излучения максимальной химической однородности порошков ванадат-фосфата иттрия удается достигнуть при рН = 9. Ключевые слова: люминофоры, микроволновый синтез, спрей-пиролиз, нанопорошки, ванадат-фосфат иттрия. Контент доступен под лицензией Creative Commons Attribution 4.0 License

Оригинальные статьи
Реальный состав образцов
Список литературы
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call