Abstract

Lead is the main toxic factor in jarosite residue. It is important to study the release behavior of lead from simulated lead-bearing jarosite (SLBJ) for predicting the stability of jarosite residue and its secondary pollution to the environment. To identify the technical issues and limitations associated with its safe disposal, a comprehensive analysis of the chemical, structural, and morphological characteristics of SLBJ was conducted using various detection techniques including XRF, XRD, SEM-EDS, FTIR, XPS, etc. The environmental stability of SLBJ was assessed through the toxicity characteristic leaching procedure (TCLP), Chinese standard leaching tests (CSLT), and a long-term leaching experiment (LTLE). Phase composition analysis revealed that the primary components of SLBJ are sodium jarosite and lead sulfate. TCLP and CSLT results indicated that lead content surpassed the toxicity identification standard limit by more than 47 times. Furthermore, LTLE indicated that the lead concentration surpassed the standard limit about 15 times after prolonged contact time. This study is of great significance for predicting the stability of jarosite residue and its secondary pollution to the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.