Abstract

The classical citrate method is based on the reduction of an Au(III) precursor with sodium citrate in an aqueous solution near the boiling point. In this work gold nanoparticles (GNPs) were synthesised via a citrate method using reduction by gamma-irradiation at room temperature. The Au(III)–citrate aqueous precursor solution was gamma-irradiated to doses of up to 30kGy. The dose rate of gamma-irradiation was ~8kGyh−1. The GNP size was controlled by the adsorbed dose as well as by different saturated gases (air or nitrogen) present in precursor solutions. The results showed that gamma-irradiation produced smaller GNPs in the presence of precursor solutions saturated with nitrogen compared with the ones saturated with air. By increasing both the gold(III) and citrate concentrations in precursor solutions, stable and highly concentrated colloidal gold/citrate suspensions were synthesised using classical and citrate-radiolytical reduction methods. Gamma-irradiation thus produced well-dispersed and highly concentrated GNPs in an aqueous citrate solution in the presence of dissolved oxygen and without adding any reducing or stabilising agents. Radiolytically intensified citrate oxidation and decarboxylation to acetone and other products by dissolved oxygen was advantageous for Au(III) reduction and subsequent formation of gold nanoparticles. Since the completely same precursor solutions were used both in the classical and citrate-radiolytical reduction methods, a real comparison of GNP sizes between these two methods was given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.