Abstract

Carbonized polymer dots (CPDs) have shown exceptional potential across a wide range of applications. However, their practical utilization is significantly greatly impeded by the lack of precise control over their structures and functionalities. Consequently, the development of controlled synthesis strategies for CPDs with well-defined structures and tailored functionalities remains a critical challenge in the field. Here, the controlled synthesis of functional CPDs with reversible assembly properties via airflow-assisted melt polymerization, followed by a one-step post-synthetic doping strategy, is reported. This synthetic approach achieves high product yield, uniform and tunable structures, as well as customized functionalities including solid-state emission, enhanced catalytic performance (3.5-45 times higher than conventional methods), and selective gas storage in the resulting CPDs. The ability to tailor the properties of CPDs through controlled synthesis opens up new opportunities for their practical application in photocatalysis and gas storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.